Крышки люков, спасающие пешеходов от падений в колодцы и мешающие автомобилистам, чаще всего круглые. Выбор такой формы объясняется соображениями безопасности: квадратная крышка при сдвиге может провалиться в люк, поскольку сторона квадрата меньше его диагонали. А у круга есть замечательное свойство — эта фигура постоянной ширины.
Постоянная ширина означает, что при «обхвате» фигуры двумя параллельными прямыми ширина полосы между ними будет постоянной, независимо от направления прямых.А есть ли на плоскости помимо круга другие фигуры постоянной ширины? Оказывается, есть, и их много. Самая простая и самая знаменитая — треугольник Рёло. Точнее говоря, эта фигура только напоминает треугольник, её граница — дуги трёх окружностей с центрами в вершинах правильного треугольника, радиусы которых равны длине стороны треугольника. Можно показать (и проверить с помощью штангенциркуля), что при обхвате треугольника Рёло параллельными прямыми точками касания прямых будут одна из его вершин и какая-то точка на противолежащей этой вершине дуге окружности. Так как радиусы всех дуг равны, то результат «измерения» всегда будет одинаков.
По той же схеме, что и для тре-угольника, фигура постоянной ширины строится на любом правильном n-угольнике, имеющем нечётное число вершин. Можно построить и несимметричные фигуры постоянной ширины.
Свойство постоянной ширины легко продемонстрировать. Для этого надо изготовить набор роликов с профилями различных фигур фиксированной постоянной ширины. Если положить ролики на горизонтальную поверхность и накрыть дощечкой, то при качении роликов дощечка будет перемещаться горизонтально.
Все фигуры данной постоянной ширины имеют одинаковый периметр. Есть у таких фигур и своеобразная иерархия: наи-большая площадь у круга, наименьшая — у треугольника Рёло.Благодаря своим геометрическим свойствам фигуры постоянной ширины находят применение в различных областях.
Первый пример. Вы опускаете монету в автомат, и она отправляется в путь по монетоприёмнику. Чтобы монета не застряла, можно, конечно, расширить трубку металлоприёмника. А можно изготавливать монеты в виде фигур постоянной ширины, тогда они не застрянут в трубке, даже вращаясь. Простейшая фигура постоянной ширины, как мы знаем, — круг, в форме которого делают большинство монет. Но есть и исключения. В Великобритании 20- и 50-пенсовые монеты имеют форму фигуры постоянной ширины, построенной на правильном семиугольнике. Такая же форма у монет достоинством в полдинара, находящихся в обращении в Иордании. Изготовление монет в виде фигур постоянной ширины, отличных от круга, позволяет экономить металл, ведь, как мы знаем, при фиксированной ширине круглая монета — самая металлоёмкая.
Второй пример. До наступления цифровой эпохи фильмы снимали на киноплёнку. И в кинокамерах, и в кинопроекторах были грейферные механизмы, обеспечивавшие скачкообразное движение плёнки вдоль объектива (стандартно — 18 скачков в секунду). Движение этих механизмов задавал треугольник Рёло.
Третий пример — из области автомобилестроения. В конце 1940-х годов Ф. Г. Ванкель придумал схему двигателя без коленчатого вала, в котором поступательное движение поршней преобразуется во вращение вала мотора. В этом двигателе, называемом роторным, нет цилиндров. Ротор при вращении постоянно касается стенок камеры двигателя, разделяя рабочее пространство на три части. В двигателе Ванкеля форма ротора в сечении — треугольник Рёло.
Возвращаясь к геометрии, заметим, что если центр треугольника Рёло двигается по определённой замкнутой кривой, а сам треугольник при этом вращается вокруг центра, то он захватывает область, имеющую форму квадрата, углы которого немного закруглены. С использованием этой идеи создано сверло, позволяющее получать почти квадратные отверстия.
По материалам книги «Математическая составляющая». — М.: Математические этюды, 2015.
Свежие комментарии